First detection of low field microwave absorption in the disordered multiferroic double perovskite BiFe0.5Mn0.5O3

Author:

Sibanda Brian,Mahule Tebogo Sfiso,Delmonte DavideORCID,Sala AndreaORCID,Gilioli Edmondo,Srinivasu V V

Abstract

Abstract BiFe0.5Mn0.5O3 (BFMO) is an intriguing magnetic double perovskite, only obtainable through high pressure-high temperature synthesis. It shows bulk multiferroic properties, namely the coexistence between a spin canted antiferromagnetic structure superimposed to an externally induced electric polarization at least from 77 K. In particular, the system is characterized by a significant weak ferromagnetic hysteresis loop and by a very rare phenomenon: the spontaneous magnetization reversal (MRV) versus temperature in the low field regime. To clarify the BFMO exotic magnetic phase in the low field regime, the Electron Spin Resonance (ESR) and the low field microwave absorption (LFMA) techniques were used, providing the first observation of LFMA in the bulk BFMO as an additional functionality of this material. A striking feature is that the hysteresis in LFMA signals vanishes above 45 K, while the bulk M-H loop hysteresis, measured in the same field range of LFMA, persists till room temperature. The temperature at which LFMA hysteresis vanishes qualitatively matches the position of the magnetic susceptibility’s second derivative peak, corresponding to the temperature at which the local second order mechanism responsible for MRV is maximum. The line shape of LFMA completely changes above 45 K and the ESR linewidth starts decreasing above this temperature, indicating the role of defect/disorder induced inhomogeneity. The temperature evolution of LFMA hysteresis and line shapes as a measure of the competition between Fe- and Mn-rich clusters suggests a sort of local frustration at the microscopic scale, responsible for the peculiar magnetization reversal of this system.

Funder

Italy South Africa bilateral mobility Research Project

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microwave absorption dynamics in Fe3O4nanopowders around Verwey transition;Journal of Physics: Conference Series;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3