Preparation of magnetic cobalt-cuprum-zinc ferrite nanoparticles and their adsorption mechanism of methyl blue

Author:

Ouyang HezhongORCID,Pan ShengyingORCID,Liu Aihua,Wang Yan,Zang Zhizhong,Liu YanchunORCID,Liu DandanORCID

Abstract

Abstract Magnetic cobalt-cuprum-zinc ferrites were prepared from anhydrous ethanol using the combustion method, and their structure and properties were characterized using the XRD, SEM, EDS, and VSM techniques, and its formation mechanism was discussed. The magnetic Co0.4Cu0.2Zn0.4Fe2O4 nanoparticles calcined at 400 °C with 25 ml anhydrous ethanol were used for the removal of methyl blue (MB). The results showed that the pseudo-second-order kinetic model best agreed with the adsorption method. In addition, analysis of the adsorption isotherms using the Freundlich, Langmuir, and Temkin models showed that theTemkin model was most consistent with experimental results, which revealed that the adsorption of MB onto the Co0.4Cu0.2Zn0.4Fe2O4 nanoparticles was a multi-molecular layer chemisorption. Further, the influence of pH on the adsorption capacity was evaluated and was highest at pH 11. The cyclability and removal rate of the nanoparticles were explored. The removal rate was approximately 80% after 7 cycles, revealing that the magnetic CoxCuyZn(1-x-y)Fe2O4 nanoparticles are important for wastewater treatment.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3