Effects of cell aspect ratio and relative density on deformation response and failure of honeycomb core structure

Author:

Khan Muhammad Salman,Rahimian Koloor Seyed SaeidORCID,Tamin Mohd NasirORCID

Abstract

Abstract The extensive applications of honeycomb (HC) core in sandwich structures necessitates the influence of the cellular geometry and cell wall base material on the mechanical response to be quantified. In this respect, this paper establishes the mechanics of the deformation and the failure processes of the HC core under the out-of-plane compressive, tensile, and shear loading. The corresponding mechanical properties are determined and the mechanisms of failure of the HC core structure are identified. The influence of the relative density (ρ*/ρ s ) and the cell aspect ratio (H/c) of the hexagonal HC core on the compressive deformation response, the out-of-plane properties and the characteristic dissipation energy density (DED) of the structure is established. Results show that the compressive strength increases exponentially from 1.5 to 10.6 MPa over the relative density range of 0.028 ≤ (ρ*/ρ s ) ≤ 0.125. The out-of-plane shear modulus, G 13 and G 23 are 33.9 and 58.2 MPa, while the shear strength, τ 13 and τ 23 are 1.07 and 2.03 MPa, respectively. The HC core with a low aspect ratio (H/c < 2.64) failed due to the early debonding of the double-wall hexagonal cells, while at H/c ≥ 2.64, by elastic buckling of the cells. A phenomenological model is formulated to highlight the combined effects of both parameters on the compressive strength (σ c ) of the HC cores, covering the range of 0.028 ≤ (ρ*/ρ s ) ≤ 0.056 and 2.5 ≤ (H/c) ≤ 5.62. Furthermore, the characteristic dissipation energy density (DED) under the out-of-plane compression varies linearly within the range of 2.5 < (H/c) < 5.62 for the HC core with ρ*/ρ s = 0.056. The HC core with H/c = 3.96, but with twice higher ρ*/ρ s exhibits about twice larger DED. These resulting properties and failure mechanisms of the anisotropic paper-based HC core are useful for the validation of the predictive computational models.

Funder

Aerospace Malaysia Innovation Centre

National University of Sciences and Technology (NUST), Pakistan

Universiti Teknologi Malaysia

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference34 articles.

1. Mode-II interlaminar fracture and crack-jump phenomenon in CFRP composite laminate materials;Koloor;Compos. Struct.,2018

2. Analysis of mechanical properties of aramid honeycomb core;Tsujii;Trans Jpn Soc Mech Eng,1995

3. Evaluation of the material properties of resin-impregnated Nomex paper as basis for the simulation of the impact behaviour of honeycomb sandwich;Hähnel,2006

4. Mechanical properties of Nomex material and Nomex honeycomb structure;Foo;Compos. Struct.,2007

5. Characterization of Nomex honeycomb core constituent material mechanical properties;Roy;Compos. Struct.,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3