Abstract
Abstract
Molybdenum carbide (Mo2C) films were prepared using pulsed direct-current (DC) magnetron sputtering. The effects of film thickness on the phase structure, surface morphology, and optical constants of the films were examined using X-ray diffraction (XRD), atomic force microscopy, and extreme ultraviolet reflectivity. XRD analysis showed that the as-sputtered films with thicknesses between 30 nm and 150 nm were almost amorphous. New phase α-MoC1-x with the (111), (200), (220), (311), and (222) crystal planes appeared in films with thicknesses between 200 nm and 400 nm. The phase transition and chemical composition of the Mo2C films treated using vacuum heat treatment were analyzed in detail. For 150 nm-thick films, the as-deposited as well as the 600 °C-annealed films were amorphous. The phase structures of the 150 nm-thick film annealed at 700 °C, 750 °C, and 800 °C were orthogonal Mo2C (α–Mo2C), multiphase structure (β–Mo2C, monoclinic MoO2, and cubic Mo2N), and monoclinic MoO2, respectively. X-ray photoelectron spectrometry revealed that the Mo-Mo bonds of the films transformed into Mo-C, Mo-O, and Mo-N bonds under 750 ℃-annealing, further confirming the formation of a multiphase structure after annealing. Thus, film thickness and annealing temperature considerably influence the properties of Mo2C films.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献