Tailoring complex permittivity and permeability to enhance microwave absorption properties of FeCo alloy particles through adjusting hydrazine reduction process parameters

Author:

Zare YORCID,Shams M HORCID,Jazirehpour M

Abstract

Abstract Owing to their high permeability, metallic soft magnetic materials exhibit high potential as microwave absorbers. The great challenge in designing desirable absorption properties from these materials is their large electrical permittivity at microwave frequencies. So, decreasing their permittivity within acceptable limits while keeping permeability at sufficiently high or improved levels is considered an important requirement for matching impedance and obtaining excellent electromagnetic (EM) absorption properties. In the present research, FeCo alloy particles produced employing by a simple wet chemical reduction process with the intention of investigating dependence of their EM properties on synthesis parameters. The characterizations were done with the help of x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The intrinsic EM properties (ε r , μ r ) in a frequency range of 2–18 GHz were measured by a vector network analyzer (VNA) for the paraffin composites containing obtained products. The results indicated that the concentration of NaOH and metallic salts as the synthesis precursors can tune the permittivity and permeability. Under optimum conditions, bandwidths of 7.3 and 5.5 GHz with thicknesses of only 1.2 and 1.5 mm were obtained respectively. Also, Reflection loss (RL) of −45 dB was attained. The excellent EM absorption properties demonstrated that the synthesized FeCo alloy may be an ideal absorber having both a wide absorption bandwidth and a low thickness.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3