Abstract
Abstract
CO2 corrosion is an inevitable problem of marine riser steel for oil and gas transportation. In the following work, the corrosion behavior was revealed in terms of microstructure characterization, corrosion kinetic curves, morphology and phase composition analysis of corrosion products, distribution characteristics of elements in corrosion products and electrochemical corrosion behavior. The results showed that FeCO3 crystals gradually evolved from dispersed clusters to complete FeCO3 layers with the extension of exposure time, which improved the protection ability of the corrosion product layer to the substrate. With the prolongation of corrosion time, the protective effect of the corrosion product layer on the substrate was gradually enhanced. The self-corrosion potential moved to the positive direction and the self-corrosion current density decreased. As a result, the corrosion rate gradually decreased and tended to be stable. The increase of corrosion-resistant elements content made the self-corrosion current density significantly decreased. The high content of corrosion-resistant elements effectively hindered the contact of corrosive ions with the substrate and inhibited the electrochemical corrosion reaction.
Funder
University of science and technology Liaoning Talent Project Grants
Scientific Research Project of Liaoning Provincial Department
Youth Foundation of University of science and technology Liaoning
Natural Science Foundation of Liaoning Province
Excellent Talents Project of University of Science and Technology Liaoning
National Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献