Comparative studies on the morphological, structural and optical properties of NiO thin films grown by vacuum and non-vacuum deposition techniques

Author:

Jamal M S,Chowdhury M SORCID,Bajgai Saraswati,Hossain M,Laref A,Jha Pankaj Kumar,Techato KuaananORCID

Abstract

Abstract The structural and optical characteristics of Nickel oxide thin films (NiOTF) formed on the soda-lime glass substrate (SLG) under vacuum and non-vacuum conditions are investigated in this work. The difference between RFMS (Radio Frequency Magnetron Sputtering; vacuum) and SP (spray pyrolysis; non-vacuum) was helpful in the development of NiOTF. Deposited films data for this study were characterized by using x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), scanning probe microscopy (SPM), and optical spectrophotometer. Structural studies disclosed that NiOTF developed via RFMS technique was more uniform with large crystals and lower surface roughness in contrast to that of developed via SP technique. Transmittance spectrum divulged that the transmittance of spray pyrolyzed NiO films are ∼10% less than that of ones produced by RFMS. Urbach energy analysis of NiOTF developed by RFMS and SP affirmed the findings of structural studies.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3