Study on damage and cracking of Mg-Gd-Y-Ag-Zr alloys during rolling based on experimental and finite element method

Author:

Ning Huiyan,Wang Xiaohong,Xu Li,Yao Chuanxin,Ye Haowei,Bi FengyangORCID

Abstract

Abstract Edge cracking, a common issue encountered during the rolling of magnesium alloys, holds substantial importance in determining the success of subsequent finishing processes. It serves as a pivotal parameter for evaluating the formability of rolled plates. In this particular investigation, researchers concentrated on understanding the behavior of edge cracks within the solid solution magnesium alloy designated as Mg-10Gd-3Y-2Ag-0.4Zr (expressed in weight percentage as GWQ1032K). To support this analysis, one delved into the thermal rheological characteristics of the magnesium alloy and established a mathematical relationship connecting rheological stress, strain rate, and temperature. This served as the foundation for a constitutive model tailored to the alloy. Furthermore, practical rolling experiments were conducted to examine how reductions in thickness influenced the morphology of edge cracks in rolled plates. The study also explored shifts in stress–strain behavior and microstructural changes during the deformation process. The results highlighted the substantial impact of compression levels on the magnesium alloy’s anisotropic behavior, subsequently influencing the shape of the resultant plate and the stress–strain characteristics observed during deformation. Significantly, as the rolling reduction increased, a notable increase in heat generation due to the plastic deformation of the magnesium alloy plate was observed. This heightened heat played a key role in dynamic recrystallizationand and facilitating the formation of the brittle Mg5(RE, Ag) phase. Consequently, minimizing the generation of this brittle phase emerged as a critical factor in effectively managing and controlling edge cracks in the rolling process.

Funder

Heilongjiang Province Basic Scientific Research Business Project of Heilongjiang Institute of Technology

Heilongjiang Provincial Natural Science Foundation of China

The Opening Fund Project of National Defense Science and Technology Key Laboratory

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3