High flux durability underwater superoleophobic mesh modified by poly (maleic acid mono-(2-(dimethylamino)-ethyl ester-co-hydroxyethyl acrylate) and nanosilica particles hybrid

Author:

Mao WentaoORCID,Qiao Baolei,Kong Qinggang,He Wenjun,Qian Haiyan

Abstract

Abstract It is difficult to separate oil-polluted water mixtures, which has been considered a global problem. In this study, a simple dip-coating process was used to produce a stainless-steel mesh coated with poly (malaic acid mono-(2-(dimethylamino)-ethyl ester-co-hydroxyethyl acrylate)-tetraethyl orthosilicate-silica (P(MDME-co-HEA)-TEOS-SiO2). The membrane’s shape, chemical composition, separation capabilities, and mechanical properties were carefully examined. The membrane was extremely hydrophilic and extremely oil-phobic underwater due to its rough surface structure and hydrophilic chemical composition. For petroleum ether/water mixture, the separation flux of the membrane reached 224,600 l·m−2·h−1, with a 99.96% separation efficiency. The coated mesh also presented outstanding anti-oil fouling performance. Moreover, it exhibited excellent mechanical resistance and chemical stability.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3