Recent advances of silicate materials for wastewater treatment: a review

Author:

Xu Meng,Wang JinshuORCID,Wu JunshuORCID

Abstract

Abstract Heavy metal ions and organic pollutants cause irreversible damage to water environment, thereby posing significant threats to the well-being of organisms. The techniques of adsorption and photocatalytic degradation offer versatile solutions for addressing water pollution challenges, attributed to their inherent sustainability and adaptability. Silicates exhibit exceptional practicality in the realm of environmental protection owing to their structural integrity and robust chemical/thermal stability during hybridization and application process. Furthermore, the abundance of silicate reserves, coupled with their proven effectiveness, has garnered significant attention in recent years. This detailed review compiles and analyzes the extensive body of literature spanning the past six years (2018–2023), emphasizing the pivotal discoveries associated with employing silicates as water purification materials. This review article provides a comprehensive overview of the structure, classification, and chemical composition of diverse silicates and offers a thorough descriptive analysis of their performance in eliminating pollutants. Additionally, the utilization of diatomite as either precursors or substrates for silicates, along with the exploration of their corresponding purification mechanisms is discussed. The review unequivocally verifies the efficiency of silicates and their composites in the effective elimination of various toxic pollutants. However, the development of novel silicates capable of adapting to diverse environmental conditions to enhance pollution control, remains an urgent necessity.

Funder

Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3