Abstract
Abstract
In this work, we implemented Monte Carlo simulations in order to describe the magnetic phase transition properties of a mixed ferro-ferrimagnetic ternary alloy cylindrical nanowire with formula
AB
p
C
1
−
p
. The ternary compound, known as Prussian Blue Analog, exhibits two interpenetrating lattices, one containig components with spin −3/2 and the other one with a random distribution of spin −1 and spin −5/2 compounds. The concentration of spin −3/2 compounds p, and the interaction ratio R were independently modulated to study their influence on the critical temperature, saturation magnetization and compensation temperature. The results show that it is possible to modify the transition temperature and saturation magnetization of the system just by manipulating p and R values, and it was determined, not only the existence of compensation in the sample, but also the fact that it is possible to determine the behavior of the compensation temperature by varying these parameters. In addition, a critical concentration value p
c
, which is a threshold related to the compensation temperature, was determined from magnetization curves and compared to the one computed through a percolation analysis.
Funder
Colciencias, Jóvenes Investigadores e Innovadores
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献