Adsorption potential of macroporous Amberlyst-15 for Cd(II) removal from aqueous solutions

Author:

Razzaq Rabil,Shah Khizar Hussain,Fahad MuhammadORCID,Naeem Abdul,Sherazi Tauqir A

Abstract

Abstract The macroporous ion exchange resins are unique and most suitable for the adsorption of heavy metal ions due to their porous three-dimensional structures and large specific surface areas. In the current investigation, a macroporous sulphonic acid cation exchange resin Amberlyst-15 was implemented for the adsorption of Cd (II) using batch adsorption technique to evaluate its removal efficiency. The characterization of resin surface was performed by several techniques: Scanning Electron Microscopy/Energy dispersive x-ray Spectroscopy (SEM/EDS), Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) surface area and Point of zero charge (PZC). The effects of various experimental parameters such as time, temperature, concentration, pH and dosage amount were examined in detail. The optimum pH for maximum uptake of Cd(II) onto the Amberlyst.15 was observed at pH 3 showing the efficient working of resin under highly acidic conditions. The results also proved that Amberlyst-15 showed tremendous adsorption potential toward Cd(II) removal; 99.95% removal within 30 min reaction time and 2.01 mmol g−1 maximum adsorption capacity at 323 K. The adsorption data was well described by Langmuir adsorption isotherm and pseudo second order models. The thermodynamic parameters revealed that the adsorption was endothermic, spontaneous and feasible process with increased randomness at resin surface. The free energy of adsorption (E) (13–15 kJ mol−1) determined from Dubinin-Radushkevitch (D-R) model proved the ion exchange reaction mechanism for Cd(II) adsorption. The experimental results reported herein validate that Amberlyst.15 resin is a promising adsorbent for the enhanced removal of Cd(II) and other toxic metals from contaminated water and waste effluents.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3