Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications

Author:

Afreen Afshan,Ahmed RashidORCID,Mehboob Saadia,Tariq MuhammadORCID,Alghamdi Huda Ahmed,Zahid Alap Ali,Ali Imran,Malik Kausar,Hasan AnwarulORCID

Abstract

Abstract Silver nanoparticles (AgNPs) synthesized from plant extracts are widely used for the cure of many diseases from fever to cancers. Keeping in view the medicinal value of AgNPs, here we report a cost-effective phytochemical method for the biosynthesis of silver nanoparticles from Ajuga bracteosa. A. bracteosa is an important medicinal plant used to cure fever, appetite-loss, and cancer. Silver-nanoparticles were prepared from the aqueous extract of the plant. The methanolic extract of A. bracteosa (ABMF) was separated and n-hexane (ABHF) and chloroform (ABCF) fractions were obtained from the methanolic crude extract. The AgNPs were characterized by UV-Visible spectrophotometer, FTIR, XRD, and TEM. The total phenolic contents (TPC) and total flavonoid contents (TFC) in different fractions were determined and compared with AgNPs. The medicinal value of ABMF, ABHF, ABCF, and AgNPs was evaluated by antibacterial, antioxidant, anti-inflammatory, and cytotoxicity bioassays. The UV-visible spectrum showed a peak at 484 nm while FTIR results suggested strong capping of phytochemicals on AgNPs which was confirmed by a high amount of TPC and TFC. XRD analysis depicted a high degree of crystallinity and smaller size of AgNPs. TEM results showed spherical shaped AgNPs of size range 50 ± 12 nm. The biosynthesized AgNPs showed better antibacterial activity than plant extract fractions. Similarly, AgNPs have shown better antioxidant, cytotoxicity against cancer cell lines in-vitro, and anti-inflammatory activity in-vivo than a plant extract. The great medicinal value of A. bracteosa might be due to the presence of pharmacologically active phytochemicals such as diterpenoids, neo-clerodane flavonol glycosides, ergosterol, iridoid glycosides, phytoecdysones, and other polyphenols. These phytochemicals surround the silver nanoparticles during green synthesis and therefore, this capping of phytochemicals over silver nanoparticles results in enhanced biomedical applications of plant extracts.

Funder

Qatar National Research Fund

Deanship of Scientific Research at King Khalid University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3