The influence of laser etching biomimicking configuration on the strength of metal-plastic connection

Author:

Liu FengdeORCID,Xu Xiaoni,Liu Jiaming,Fan Haiqi,Huang Genzhe,Zhang Hong

Abstract

Abstract This study uses a laser to etch biomimicking locking patterns on the surface of 304 stainless steel to strengthen the connection between metal-plastic products. Under heat and pressure from the device, the plastic melts into the pattern and coalesces it, while the burrs formed from the etching process lock the joint of the metal-plastic. Three biomimicking configurations, honeycomb, leaf vein, and dragonfly head-and-neck hair interlocking, are studied. As shear strength determines the connection strength, we simulate the tensile-shearing process of stainless steel and plastic connectors of the three biomimicking configurations on ABAQUS, and predict the effects of the configurations on their connection strength. Experiments show that the plastic and metal are effectively connected at a heating temperature of 400 °C and a pressure of 70 kN. When the burr rate is 7.66% and the coverage rate is 29.4 ± 0.5%, the three biomimicking connectors break at the plastic base material, and the dragonfly head-and-neck hair interlocking configuration can withstand a shear force of 942 ± 9.23 N.

Funder

Jilin Scientific and Technological Development Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference21 articles.

1. Application of porous oxide layer in plastic/metal direct adhesion by injection molding;Yeh;Ournal of Adhesion Science and Technology,2015

2. An integrated automotive roof module concept: plastic-metal hybrid and polyurethane composite technology;Korson,2005

3. Experimental study of glass to metal seals for parabolic trough receivers;Lei;Renewable Energy,2012

4. Development of PMMA‐precoating metal prostheses via injection molding: residual stresses;Zhao;Journal of Biomedical Materials Research,2001

5. Multifunctional structure technologies for satellite applications;Aglietti;The Shock and Vibration Digest,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3