A comparative investigation of hardness and compression strength of Nickel coated B4C reinforced 601AC/201AC selective layered functionally graded materials

Author:

Vijay SORCID,CH Srinivasa Rao

Abstract

Abstract High hardness and compression strength are the essential properties in many engineering applications. Requirement of light weight materials with high mechanical properties as a function of direction leads to the development of Aluminium based Functionally Graded Materials (FGM). Two different matrix metal blends 601AC and 201 AC are used for the comparison. Mechanical Alloying technique (MA) is used to blend the metal powders. The FGM specimens with 2 layers, 3 layers and 5 layers are fabricated using Powder Metallurgy (P/M) technique. B4C with Nickel coating and without Nickel coating is used as particulate. Two different average particle size of B4C (20 μm and 50 μm) was selected. The configurations used for the FGMs are 0%/5% for 2 layered specimen, 0%/5%/10% for 3 layered specimen and 0%/5%/10%/15%/20% for five layered specimen. Specimens are prepared according to ASTM B925-3 standard for micro-hardness test and compressive strength test. Graphs are plotted in terms of number of layers, particle size, sintering temperature, and coating condition. From the experiments it is observed that, number of layers influences the hardness and compressive strength. The average specimen hardness is enhanced from 55 HV for two layered FGM to 73 HV for three layered FGM. The compressive strength is increase from 613 MPa for three layered specimen without Nickel coated B4C to 732 Mpa for three layered specimen with Nickel coating. Best possible combination of all parameters is observed from the experiment is particle size of 20 μm, sintering temperature of 570 °C, and B4C particulate with Nickel coating. Compared to the hardness values for two different matrix materials 601AC/201AC, closure values are observed for the best possible combination of other variables. Where-as for the compressive strength 201AC matrix shows superior values compared to 601AC for the best possible combination of all the other variables.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference36 articles.

1. Concept and P/M fabrication of functionally gradient materials;Kawasaki;Ceram. Int.,1997

2. Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying;Parvin;Materials Science and Engineering: A,2008

3. Design of hole-clinching process for joining of dissimilar materials–Al6061-T4 alloy with DP780 steel, hot-pressed 22MnB5 steel, and carbon fiber reinforced plastic;Lee;J. Mater. Process. Technol.,2014

4. Benefits of die wall lubrication for powder compaction;Lemieux;Adv. Powder. Metall. Part. Mater.,2003

5. Mechanical properties of fly ash reinforced aluminium alloy (Al6061) composites;Anilkumar;International journal of mechanical and materials engineering,2011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3