Research for microstructure and mechanical properties of AZ91 magnesium alloy welded joint with magnetic field and activated flux

Author:

Guiqing ZhangORCID,Yinglei Ren,Yunhai SuORCID

Abstract

Abstract Although many experimental researches have been carried out on the effect of different fluxes and the mechanism responsible for the higher penetration in activated TIG welding of magnesium alloy, few works as reported in literatures are available concering the grain refinement and the improvement of mechanical properties of welding joints. This is because the activated flux has very limited or even negative effects on improving the mechanical properties of welded joints. In order to find a method that can improve welding efficiency and mechanical properties of welded joints, the longitudinal alternating magnetic field and NiCl2 activated flux were used during TIG welding of AZ91 magnesium alloy. The formation, mechanical properties, phase composition and crystal growth pattern of the weld seam were tested and analyzed to study the mechanism. The experimental results reveal that with proper parameter matching (magnetic field and activated flux), larger weld penetration and smaller form factor can be obtained, welding efficiency is improved accordingly, but the form factor with the magnetic field is bigger than that without magnetic field. When the activated flux amount is 3 mg cm−2 with the magnetic field, the optimal value of mechanical properties of welded joint is obtained, tensile strength is 385 MPa, elongation is 13.3%, micohardness is 67 HV, respectively. All of these are better than those without the magnetic field, the optimal activated flux amount is 2 mg cm−2. The application of magnetic field and activated flux has no noticeable effect on the phase composition of weld seam. Under the combined action of magnetic field and activated flux, the crystallization nucleation condition of molten pool was changed, the grain size was refined, the formation of twins was promoted, and the crystals selectively grew within the basal (0001) plane.

Funder

National Key Research and Development Plan of China

Liaoning Key Laboratorie

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3