Development of solar supercapacitor by utilizing organic polymer and metal oxides for subsystem of EV

Author:

Rahman Ataur,Myo Aung KyawORCID

Abstract

Abstract The limitations of the electric vehicles are weight, size, range, charging time and high price tag. Thus, development of a renewable energy-boosting system for EVs is significant. This paper proposes the materials and control system for development of the automotive body panels which are capable to generate electrical energy from solar energy and store the energy not only as structural capacitor but also as solar panel. A solar supercapacitor prototype is developed by utilizing Carbon Fiber Reinforced Polymer, nano Zinc Oxide and Copper Oxide fillers as the positive and negative electrodes and a dielectric layer sandwiched between the electrodes. Different weight percentage compositions of nano CuO/ZnO filled epoxy reinforced Carbon Fiber and different combinations of separators are investigated experimentally. Samples with higher nanoparticle composition can boost both the energy generation and storage performance. Simulation study is conducted on solar supercapacitor concept which is hybrid energy storage system, modelled as the supplementary renewable energy source of electric vehicle. Experiment data from the laboratory scale organic solar supercapacitor are considered as input reference data to design solar supercapacitor HESS in Simulink to generate electricity from solar energy and provide storage. The solar supercapacitor can be considered as the roof panel of EV and simulated at different solar irradiance (200 ∼ 1000 W m−2) and different load conditions (200 ∼ 500 W) to reflect the practical conditions. The test results of SSC show potential of energy conversion efficiency (η ec) 17.78%, open-circuit voltage (Voc) 0.79 mV, current density (Jsc) 222.22 A m−2, capacitance (C) 11.17 μF cm−2, energy density (Ed) 120 Wh kg−1 and power density (Pd) 29 kW kg−1. Based on Simulink results, fully charged solar supercapacitor system with solar irradiance of 1000 W m−2 can provide power of 2.3 kWh (18.24 km extra range every hour). Therefore, the system can provide extra 4.56% of conventional EV’s power and range per hour. Solar supercapacitor system integrated with EV battery has the potential to reduce battery size by 10%, weight 7.5%.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3