Role of 1D edge in the elasticity and fracture of h-BN doped graphene nanoribbons

Author:

Zhang Faling,Wang Guotong,Wang Ruijie,Wang Liya,Tang ChunORCID,Wang ChengyuanORCID

Abstract

Abstract Recent achievement of BN-graphene alloy material has enabled the potential of bandgap tuning through both sub-10 nm width control and BN concentration variation. However, its mechanics, which is necessary for prediction of stability in functional applications, is not well studied. Here, molecular dynamics simulation is performed to conduct uniaxial tensile test for BN-doped graphene nanoribbons (BN-GNR) with varying widths and BN atom fractions. Efforts are made to study the constitutive relations for the edges and the whole BN-GNR and explore the fracture mechanisms of the hybrid nanoribbons. The substantial softening effect of the edges induced by wrinkling alters the impact of BN concentration on the stiffness in the sub-20 nm regime deviating from the linear behaviour observed in the bulk case. Fracture properties are unexpectedly independent of BN concentrations unlike in the bulk and the failure behaviour is rather decided by the graphene ribbon edge structure. Here the armchair edges serve as the source of crack nucleation at an early stage leading to weakened strength and reduced stretchability, whereas zigzag edges do not promote early crack nucleation and leads to the size dependence of fracture properties.

Funder

Jiangsu Funding Program for Excellent Postdoctoral Talent

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3