Synthesis, characterization, and gas-sensing application of Cd0.5Zn0.5NdxFe2–xO4 nanoparticles

Author:

Korek HaniORCID,Habanjar KhuludORCID,Elsharkawy Sherif GORCID,Awad R

Abstract

Abstract Fabrication of Cd0.5Zn0.5NdxFe2–xO4 nanoparticles, with x = 0.00, 0.01, 0.02, 0.04, 0.06, and 0.08, has been carried out using a wet chemical co-precipitation method. The effect of the rare earth Nd3+ doping on the prepared ferrites was structurally investigated using x-ray diffraction (XRD) along with Rietveld refinement. The results indicate great crystallinity in the FCC Fd3m spinel structure of Cd0.5Zn0.5NdxFe2–xO4 nanoparticles. The lattice parameter increases with the increase of doping concentration from 8.5378 until 8.5432 Å and the crystallite size obtained using Debye-Sherrer, Williamson–Hall, Size-strain plot (SSP), and Halder-Wagner (H-W) methods, decreases until the solubility limit of the materials is at x = 0.04. By using transmission electron microscopy (TEM), the morphological analysis reveals the spherical shape of the samples with minor agglomeration with the aid of using a Polyvinylpyrrolidone (PVP) capping agent. The grain size ranges from 14.37 to 15.24 nm. Raman spectroscopy verifies the incorporation of Nd3+ in the octahedral sites and the decrease in particle size. The elemental composition was verified using x-ray photoelectron spectroscopy (XPS). The magnetic properties were studied using a vibrating sample magnetometer (VSM) and it shows superparamagnetic behavior with a decrease in the saturation magnetization from 2.207 to 1.918 emu g−1 and an increase in coercivity from 7.194 to 14.397 G. The prepared materials were tested as liquefied petroleum gas (LPG) sensors by studying their sensitivity, selectivity, optimum working temperature, response, and recovery times. Nd3+ doping shows a great increase in LPG sensing sensitivity 4 to 20 times than the pure samples. The doping concentration also decreases the response and recovery times.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3