Abstract
Abstract
Herein, the effect of current on the solidification microstructure and properties of 35CrMo structural steel has been studied. The effect of an electric field on the solidification structure of an ingot was investigated by immersing two parallel electrodes into the free surface of molten steel. Using the interaction between the current and melt as well as the Lorentz force generated by its own induced magnetic field, the whole region of the melt was covered with an eddy current. The numerical simulation of the ingot solidification process has been carried out and its influence on the inner flow field during the ingot solidification control process discussed. The results showed that an applied electric field caused turbulence inside the ingot, which drove the molten alloys to rotate and stir, refined the solidification structure, reduced the solidification defects, such as shrinkage cavity and segregation, and increased from 549.9 MPa at the top edge of the ingot and 411.4 MPa at the middle edge to 560.2 and 510.2 MPa, respectively. In addition, the electric field made the hardness and strength of each part of the ingot more uniform and improved the quality of its rigidity for the steel production process.
Funder
National Natural Science Foundation of China
the Liaoning Provincial Department of Education Basic Research Projects for Universities
University of Science and Technology Liaoning Young Foundation
Central Government Guides Local Science and Technology Development Fund Projects
National Key Research and Development Program of China
Outstanding Young Scientific and Technological Talents Project of University of Science and Technology Liaoning