Abstract
Abstract
Chromium (Cr) doped cobalt ferrite (Co1−xCrxFe2O4:x = 0.0, 0.02, 0.04, 0.06, 0.08, 0.1, denoted as to CCFO) hollow nanotubes were synthesized by electrospinnig method followed by, calcining treatment at 700 °C in air. The samples exhibited a single phase cubic spinel phase. The lattice constant of the samples was found to initially decreased and thereafter increases with increased of Cr content. The morphology analysis indicated that the samples displayed a disordered arrangements of hollow structures and the relevant surfaces were rough and porous. Transmission electron microscopy (TEM) paragraph confirmed that the doped CCFO nanotubes had a polycrystalline nature and exhibited the changes in the corresponding crystal structure. X-ray photoelectron spectroscopy (XPS) confirmed that Cr doping affect the crystal structure and atomic-binding energy. The analysis of magnetic hysteresis loop indicated an obvious reduction in the saturation magnetization (Ms) of cobalt ferrite with increasing in Cr substitution. The remanent magnetization (Mr) and coercivity were increased at first and then decreased with increasing of Cr content, which was elucidated by the surface effect and magnetic moment direction. The switching field distribution analysis indicated the magnetically crystal soft phase and there were multiple-step processes to reach magnetic reversal.
Funder
Gansu Province Higher Colleges Innovation Ability Enhancement Project
Longyuan Youth Innovation and Entrepreneurship Team Project
National Nature Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献