Microstructures and mechanical properties of 4 wt%TiB2/Al-Si-Cu-Zn (T6) composite thin-walled shell housing fabricated by high pressure die casting

Author:

Xi Shuaiying,Ma Guodong,Li LuORCID,Zhang Yuanbo,Yu XiangyangORCID,Li Yongkun,Zhou Rongfeng

Abstract

Abstract The application demand of lightweight high-quality aluminum alloy parts in automotive and aerospace fields is increasingly. In aluminum matrix composites, reinforcing particles can significantly improve the performance of the matrix. In this paper, the microstructures and mechanical properties of die-cast 4 wt%TiB2/Al-9Si-3Cu-0.8Zn composite were systematically analyzed by x-ray diffraction, optical microscope, scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy and tensile testing. The composite was successfully fabricated from an Al-K2TiF6-KBF4 system by in situ melting technique. The research results show that the average grain sizes of the α-Al phase gradually decreased with the increase of filling distance. And the TiB2 particles were distributed around eutectic Si in irregular polyhedral morphology or nearly circular shape. Meanwhile, the crystal structures of Ti-B compound and long needle shaped nano-sized precipitated were identified and analyzed, and they were found to be TiB2 and Al2Cu phase, respectively. Tensile testing results show that the mechanical properties of die-cast composite clearly increase after T6 heat treatment. The yield strength, ultimate tensile strength and elongation could reach 311 MPa, 379 MPa and 2.8% respectively, with the best injection velocity (1.8 m s−1). The significantly enhancement of mechanical properties of composite after T6 heat treatment was mainly due to the introduction of TiB2 reinforcing phase and the precipitation of Al2Cu precipitate in the aging stage. The results implied that the introduction of TiB2 reinforced particles could improve the mechanical properties of die castings, which has an important guiding role for its practical application.

Funder

Funding of China Scholarship Council

High-tech Industry Development Project of Yunnan Province

National Natural Science Foundation of China

Ten Thousand Talent Program of Yunnan Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tensile deformation behavior of a lightweight AlZnCu medium-entropy alloy;Journal of Materials Research and Technology;2024-07

2. Design of Non-Heat Treatable High Pressure Die Casting Al Alloys: A Review;Journal of Materials Engineering and Performance;2024-04-26

3. LiNbO3-based sol-gel composite ultrasonic transducer poled at low temperatures;Japanese Journal of Applied Physics;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3