Honeycomb pattern formation on poly(vinyl chloride) films: electrically-driven microparticle trapping and the effect of drying temperature

Author:

Budlayan Marco Laurence MORCID,Patricio Jonathan NORCID,Yap Gillian Kathryn B,Gayosa Jose Jesus AORCID,Arco Susan D,Diaz Jose Mario AORCID,Guerrero Raphael A

Abstract

Abstract This work presents the effect of drying temperature on the formation of poly(vinyl chloride) (PVC) honeycomb microstructures formed by the breath figure technique. Results revealed the self-assembly of honeycomb patterns with small cell diameter and thick cell walls dried at room temperature. An increase in cell diameter and a decrease in wall thickness were observed as drying temperature was increased up to 70 °C while no formation of patterns was noted at temperatures greater than or equal to 80 °C. The presence of honeycomb patterns consequently enhanced the static water contact angle of the PVC layer. Electrowetting experiments revealed more pronounced reduction in the water contact angle on honeycomb-structured PVC compared to a flat PVC layer at any given applied voltage. A proof-of-concept on the feasibility of the honeycomb structures to trap microparticles by electrically-driven droplet actuation was further demonstrated. Corresponding SEM images confirmed the entrapment of microparticles in the honeycomb cells and walls after the electrowetting experiment. These results offer new and facile strategies for tuning the morphological properties of polymeric honeycomb microstructures and its possible application in microparticle trapping and sensing.

Funder

Department of Science and Technology

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3