Synthesis of Alq3 by a facile co-precipitation approach and study the impact of CNTs support on its microstructure and electronic characteristics for photodiode development

Author:

Siddiq Miad AliORCID

Abstract

Abstract The global demand for renewable energy as an alternative to traditional fossil fuels has motivated the scientific community to develop highly efficient nanocomposite materials that can be used for enhancement to optoelectronic technology. In the present work, organometallics Alq3 and Alq3/CNTs were prepared by cost-effective chemical route. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to identify the structural and morphological features. The hybrid Alq3/CNTs exhibited polycrystalline structure with a large surface area. The optical band gap ( E g ) of Alq3 film was evaluated within the visible spectrum in the range of 3.047 eV which reduced to 2.979 eV by CNTs integration. Ag/Alq3/p-Si/Al and Ag/Alq3/CNTs/p-Si/Al photodiodes were fabricated using thermal evaporating technique. Current-voltage ( I V ) and capacitance/conductance-voltage ( C / G V ) were measured to analyze the photodiode behavior. The main electronic parameters like R s , n , ϕ b and I o were determined using different models indicating that the composite photodiode of high performance in which R s was decreased whereas N a was increased with doping. Besides, the photocurrent sensitivity was increased from 1.45 × 10 8 A to 1.1 × 10 5 A due to increase of free charge carriers.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3