Microstructural characterization of different metal matrix composite claddings reinforced by TiC through YAG laser cladding

Author:

Mahmoud Essam R IORCID,Tirth Vineet,Algahtani Ali,Khan Sohaib Z

Abstract

Abstract In this work, a YAG laser was used to clad TiC-reinforced metal matrix composite layers on the surface of different types of metals; low carbon steel, high C–Cr bearing tool steel, spheroidal graphite cast iron and commercially pure titanium. The cladding processes were carried out at heat inputs ranging from 175 J mm−1 to 700 J mm−1 and at a fixed traveling speed of 4 mm s−1. The microstructures of the cladding layers were investigated in detail. In all cases, TiC-surface metal matrix composite layers were successfully formed at different laser heat inputs on all the metal surfaces. A few TiC particles seemed as fine dendrites after the laser treatment. The amount of dendritic TiC has a direct relationship with the laser heat input. For low carbon steel, the clad layer showed a martensitic structure, with sound metallurgical bonding to the base metal and without any defects at the highest laser heat input used in this study (700 J mm−1). In the case of high C–Cr bearing tool steel, lower laser heat inputs were enough to form a sound clad layer consisting of fine TiC dendrites distributed in a matrix of martensite laths, some retained austenite and acicular carbides. Laser heat input of 175 J mm−1 was enough to build a defect-free clad layer on spheroidal graphite cast iron. The matrix comprised of cementite, martensite, and some blocks of retained austenite. Cracking appears at a higher heat input of 500 J mm−1 in the spheroidal graphite cast iron. The matrix of the clad layer on pure Ti substrate was α′-Ti martensite, which decreased by increasing the laser heat input.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3