Surface modification of recycled coir fibers with hybrid coating and its effect on the properties of ABS composites

Author:

Jiafeng CaiORCID,Li Qiuying,Wu Chifei

Abstract

Abstract In this work, a hybrid coating (TSMA) was produced using tetraethyl orthosilicate (TEOS)/KH550/Styrene maleic anhydride copolymer (SMA) as raw materials. The coating was afterwards applied to modify recycled coir (r-coir) fibers via dip-coating. R-coir fibers reinforced ABS composites were then prepared and the reinforcing effect of fibers on the composite structure was investigated, as well. The r-coir fibers coated with TSMA were hydrolyzed in air for 3 days. The SiO2 particles produced by sol-gel reaction of TEOS were used to connect KH550 and SMA to the surface of the fibers and form an organic-inorganic ‘armor’ structure. The successful surface modification of the r-coir fibers was proved via FTIR spectroscopic study and the improvement of their decomposition temperature was evidenced by TGA. Furthermore, the homogeneous dispersion of TSMA on the surface of r-coir fibers was observed via SEM. In addition, the tensile strength of single fibers was found to increase by 36.1%. According to the results, TSMA can be successfully homogenized on the fiber surface, enabling one to repair the damaged areas and improve the tensile strength of single fibers. Besides, good compatibility between r-coir fibers and ABS was revealed by contact angle measurements. Furthermore, the bending strength and elastic modulus of TSMA-modified r-coir fibers/ABS composites were improved by 6% and 27%, respectively. Therefore, the method of plant fiber modification proposed in present work provides a reliable way for effective reuse of r-coir fibers.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3