Mechanical properties, fracture morphology and thermal analysis of untreated and alkaline treated salago fiber epoxy laminated composites

Author:

Lopena Jerome DORCID,Millare Jeremiah C

Abstract

Abstract Natural fibers gain acceptance in various applications due to their advantages over synthetic materials especially in terms of environmental impact, lightweight feature, availability and cost. Apparently, a natural fiber that still needs further exploration on its use in composite is salago. In this study, untreated and alkaline treated salago fiber with varying number of layers from one to three sheets were reinforced in epoxy resin. FTIR analysis and optical microscopy were used to analyze the effect of 5 wt. % sodium hydroxide treatment on the fiber sheets. On the other hand, the composites were subjected to tensile, flexural and Izod impact tests. Tensile fracture morphology was observed through FESEM while thermal degradation was evaluated using thermogravimetric-differential thermal analysis. As compared to neat epoxy, improvements on tensile (52.8%), flexural (37.6%) and impact (more than 6 times) strengths were obtained for the composite with three layers of untreated fiber sheets. Generally, the mechanical properties of the composites improved as the fiber sheets increases. However, the alkaline treated fiber composites obtained lower strengths than their untreated counterparts which may be associated to the presence of holes on the fiber sheets caused by the chemical treatment. Nevertheless, enhancements on moduli and thermal stability were still achieved for the composites with treated fibers which could be related to the good fiber-matrix adhesion caused by the partial removal of hemicellulose and lignin. Moreover, the composite can be used in applications that require high impact strength and stiffness like frame for drones or robots.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3