Surface plasmon dispersion and modes on the graphene metasurface with periodical ribbon arrays

Author:

Liu Yong-QiangORCID,Li Liangsheng,Yin Hongcheng

Abstract

Abstract Graphene plasmonics on the structured metasurface demonstrate many exotic properties which can combine novel nanomaterials and well-established plasmonics, providing unique opportunities to develop a series of novel photonic, plasmonic and optoelectronic devices across a wideband spectrum. Dispersion theory and its propagating characteristics of surface plasmon polaritons (SSPs) mode along the graphene metasurface can provide a powerful guidance to design related devices and systems. In this paper, the fundamental dispersion theory and the numerical studies of graphene SSPs (GSPs) on a graphene metasurface i.e. periodical ribbon arrays which are bounded by a superstrate and substrate dielectric are presented. The dispersion expression of GSPs is deduced and revealed by a modal expansion method combined with periodical boundary conditions on the structure. According to this fully analytical dispersion expression of SSPs mode on the graphene metasurface, the dispersion characteristics, propagation loss and field profiles of SSPs mode with different graphene material parameters (e.g. graphene ribbon width and chemical potential) and bounded dielectric mediums are studied and analyzed in detail in terahertz (THz) band. Moreover, the dynamical tunable dispersion characteristics of SSPs mode on the graphene metasurface via electrostatic gating of a ground metal plate can be readily obtained by applying a graphene biased voltage model to this analytical dispersion theory. The presented studies on the dispersion theory of the graphene metasurface provide an analytical method to understand the propagation characteristics of SSPs mode on the structure. Besides, the calculation results on the structure can also be used to design some novel graphene-based optoelectronic and plasmonic devices with planar gradient-index distributions such as couplers, tunable focused lens and enhanced radiation sources in THz band.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3