Dimensional effect of SrTiO3 particles on functional performance optimization of polydimethylsiloxane-based composites for dielectric elastomer actuators

Author:

Wei Xin,Gao Shuyan,Zhang Na,Zhao HangORCID

Abstract

Abstract Dielectric elastomer materials have a great application potential in electromechanical sensing and energy-harvesting fields. However, the realization of high electro-actuation properties under a relatively low electric field is still a critical challenge. Herein two series of polydimethylsiloxane (PDMS)-based dielectric elastomer composites incorporated SrTiO3 (STO) with distinguishing diameters were prepared through solution-blending and compression moulding methods. The resultant STO/PDMS composites showed significantly enhanced dielectric permittivity and Young’s modulus. Moreover, the PDMS-based composite filled with 4 vol.% nano-scaled STO exhibited an improved electro-actuation strain of 3.3% at a very low electric field of 24 V μm−1, which was 30% larger than that of the neat PDMS. The experimental results revealed that the electro-active performance of dielectric elastomer composite under low electric fields can be influenced by the size of incorporating functional units, and be also successfully optimized by regulating the fillers-matrix interfacial interaction. This study provides a promising strategy to design and fabricate novel dielectric elastomers with advanced low-field driving electro-active properties.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3