Silicone elastomers filled with rare earth oxides

Author:

Iacob MihailORCID,Airinei Anton,Asandulesa Mihai,Dascalu Mihaela,Tudorachi Nita,Hernandez Leonor,Cazacu MariaORCID

Abstract

Abstract Silicones which possess, amongst others, remarkable mechanical properties, thermal stability over a wide range of temperatures and processability, and rare earth oxides (REO), known for their unique optic, magnetic and catalytic properties can be coupled into multifunctional composite materials (S-REOs). In addition, the intrinsic hydrophobicity of REO and polysiloxanes makes them easily compatible without the need for surface treatments of the former. Thus, europium oxide (Eu2O3), gadolinium oxide (Gd2O3) and dysprosium oxide (Dy2O3) in amounts of 20 pph are incorporated as fillers into silicone matrices, followed by processing mixture as thin films and crosslinking at room temperature. The analysis of the obtained films reveals the changes induced by these fillers in the thermal, mechanical, dielectric and optical properties, as well as the hydrophobicity of the silicones. The luminescence properties of S-REO composites were investigated by fluorescence spectra and lifetime - resolved measurements with a multiemission peaks from blue to greenish register. The thermogravimetrical analysis indicates an increasing of thermal stability of the composites that contain REO, compared to pure silicone. As expected, the dielectric permittivity significantly increased due to nature of the fillers, while the dielectric loss values are relatively low for all samples, indicating a minimal conversion of electrical energy in the form of heat within bulk composites. The presence of rare earth oxides into the silicone matrix facilitates the motions of long-range charge carriers through the network resulting in higher values of conductivity of the composite films. The stress-strain measurements revealed the reinforcing effect of the rare earth metal oxides on a silicone matrix, leading to a significant increase of Young modulus. The known hydrophobicity of silicones is further enhanced by the presence of REO.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3