Reduced impedance in dual substituted strontium cobaltite nanoparticles for renewable energy applications

Author:

Akhtar Tanveer,Anis-ur-Rehman MORCID

Abstract

Abstract Sr1−xBaxCo1−xFexO3−δ (BSCF) nanoparticles were successfully synthesized with three modified wet chemical techniques; composite mediated hydrothermal method (CMHM), without water and surfactants (WOWS) sol-gel and co-precipitation methods. The probable electrical conduction mechanism of synthesized BSCF was explored via complex impedance analysis. Various physicochemical characterization techniques were employed to study the dependence of structure, homogeneity, physical parameters and electrical properties of BSCF on synthesis procedures. X-ray Diffraction (XRD) confirmed the formation of cubic BSCF perovskite structure. Fourier Transform Infrared Spectroscopy (FTIR) spectra indicated the presence of the fingerprint region of perovskite (ABO3−δ ) structure. Scanning Electron Microscopy (SEM) images revealed uniformly diffused, micro porous and agglomerated morphology. Differential Thermal Analysis (DTA) and Thermogravimetry (TGA) verified the formation of intermediate metal carbonates that were decomposed to the final product. Nyquist plots against frequency (20 Hz–3 MHz) revealed single semi-circular arcs. The arc showed significant grain boundary contribution to total electrical conduction behaviour of BSCF material synthesized by CMHM and co-precipitation methods. Modulus analysis showed the Debye type conductivity relaxation in CMHM synthesized material. The AC conductivity graphs followed Jonscher’s power law. Temperature dependent (RT to 600 °C; 10 kHz) impedances showed decreasing trend that was an indication of thermally activated conduction process. A Correlation was established among structural and electrical conduction properties. Hydrothermally synthesized BSCF samples exhibited minimum impedances and maximum AC conductivity, which makes them a potential candidate for cathode material in (IT-SOFCs) applications.

Funder

Higher Education Commission, Pakistan

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3