In-situ synthesis of quaternary alkylammonium ligand capped organic-inorganic hybrid halide perovskite for high pure green luminescence in display application

Author:

Rao Maithili K,Paramasivam Selvaraj,Selvakumar MORCID,Santosh M S,Mahesha M G,Senthilkumar S

Abstract

Abstract This study delves into the intricate dynamics of ligand engineering for the synthesis of Methyl Ammonium Lead Bromide (MAPbBr3) nanocrystals (NCs), which exhibit immense potential in optoelectronic and photovoltaic applications. Our focus centres on the role of the quaternary ammonium molecule CTAB as a ligand in stabilizing MAPbBr3 NCs. This also addresses the challenges related to the stability and surface defects of NCs that hinder their commercial viability. Employing a modified ligand-assisted reprecipitation technique (LARP) with a dual solvent system, we optimized the CTAB concentration to 0.05 mmol, resulting in MAPbBr3 NCs with an impressive 88% quantum yield. XPS and FTIR analyses confirm the presence and binding of CTAB on the NC surface. The MAPbBr3-CTAB NCs exhibit higher exciton–phonon binding energy, enhancing their optical properties. Despite an unfavourable geometric fit, CTAB is effective in surface defect passivation due to its binding, solvation, and desorption energy during the dynamic binding process. 2D-DOSY NMR reveals approximately 66% CTAB bound to the NC surface. A comparative study involving MAPbBr3-OA, OLA, and MAPbBr3-CTAB deposited on LEDs demonstrates the superior performance of the latter, achieving a luminous efficiency of 42.18 lm W−1 at 1.2 ml deposition. These findings highlight the efficacy of CTAB in achieving high-purity green luminescence, aligning with BT.2020 display colour standards and paving the way for advanced optoelectronic applications. The successful synthesis and improved performance of MAPbBr3-CTAB NCs underscore their potential as a promising material for future optoelectronic and photovoltaic technologies.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3