Synthesis and characterization of liposomes encapsulating silver nanoprisms obtained by millifluidic-based production for drug delivery

Author:

Yanar FatihORCID,Kimpton Harriet,Cristaldi Domenico Andrea,Mosayyebi Ali,Carugo Dario,Zhang XunliORCID

Abstract

Abstract Silver nanoprisms (SNPs) have attracted significant attention due to their surface plasmon resonance behaviour, which is strongly dependent on their size and shape. The enhanced light absorption and scattering capacity of SNPs, make them a promising candidate system for non-invasive imaging and drug delivery in nanoparticle-assisted diagnostics and therapy. However, systemic administration of silver nanoparticles (AgNPs) at high concentrations may result in toxic side-effects, arising from non-targeted bio-distribution. These drawbacks could be mitigated by employing liposomes as carriers for AgNPs. However, there is a lack of systematic studies on production and subsequent physico-chemical characterisation of liposomal systems encapsulating SNPs. The present study therefore investigated the synthesis of liposomes encapsulating SNPs (Lipo/SNPs) using a continuous-flow millimetre-scale reactor, whereby liposome formation was governed by a solvent exchange mechanism. An aqueous phase and an ethanolic lipid phase were conveyed through two separate inlet channels, and subsequently travelled through a serpentine-shaped channel where mixing between the two phases took place. The synthesis process was optimised by varying both liposome formulation and the operating fluidic parameters, including the ratio between inlet flow rates (or flow rate ratio) and the total flow rate. The obtained Lipo/SNPs were characterised for their size and electrostatic charge, using a dynamic light scattering apparatus. Liposome morphology and encapsulation efficiency of SNPs within liposomes were determined by transmission electron microscopy (TEM) imaging. The synthesised negatively charged Lipo/SNP samples were found to have an average size of ∼150 nm (size dispersity < 0.3). The AgNPs encapsulation efficiency was equal to 77.48%, with mostly single SNPs encapsulated in liposomes. By using a multiangle TEM imaging approach, quasi-3D images were obtained, further confirming the encapsulation of nanoparticles within liposomes. Overall, the formulation and production technique developed in the present study has potential to contribute towards mitigating challenges associated with AgNP-mediated drug delivery and diagnostics.

Funder

Turkish Ministry of National Education

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3