Tensile and compression behaviour, microstructural characterization on Mg-3Zn-3Sn-0.7Mn alloy reinforced with SiCp prepared through powder metallurgy method

Author:

Singh G Robert,Christopher Ezhil Singh S,Sivapragash M,Anselm Lenin,Kumar R Sanjeev,Lenin A HaiterORCID

Abstract

Abstract In this research paper, Mg-3Zn-3Sn-0.7Mn/SiC composite is developed by reinforcing various weight fractions of SiCp in Mg-3Zn-3Sn-0.7Mn alloy through powder metallurgy route. The weight fraction of SiCpusage is varied from 3% to 15% in Mg-3Zn-3Sn-0.7Mn alloy (i.e., in Mg-3Zn-3Sn-0.7Mn/xSiC; the sample values are varies for x is 3, 6, 9, 12 and 15%). The effect of SiCp addition got tested against its tensile strength, compression behavior, hardness, microstructure, alloying nature and porosity. This study shows better grain refinement with improved properties while reinforcing Mg-3Zn-3Sn-0.7Mn alloy with 6 wt% SiC composites. It was observed that the grain refinement occurred while adding up to 6 wt% of SiC particles in the composite and thereafter increase in SiC caused little grain refinement effect. Hardness is getting increased with the increase of SiC weight fraction and reached maximum to 133 HV at 12SiC/ Mg-3Zn-3Sn-0.7Mn. Higher UTS of 293 MPa obtained from the sample prepared with 12%SiC for 0.0533 s−1 strain rate. The highest UCS of 341 MPa is obtained from the sample made with 15%SiC inclusion for 0.0.0533 s−1strain rate. From the SEM fracture analysis, the Mg-3Zn-3Sn-0.7Mn alloy and Mg-3Zn-3Sn-0.7Mn/SiC composite exhibit the almost same type of fracture called quasi-cleavage regardless of the % addition of SiC reinforcement. It was observed that the increase of SiC weight fraction increases the UCS because of its increased load-bearing capacity and reduction in cleavage facets.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference23 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3