Size dependent local field enhancement factor of CdSe based core@shell spherical nanoparticles

Author:

Bergaga Garoma DhabaORCID,Ali Belayneh Mesfin,Debela Teshome Senbeta

Abstract

Abstract We investigated the size dependent local field enhancement factor (LFEF) of CdSe@Ag and CdSe@ZnSe@Ag core/shell spherical nanoparticles theoretically and numerically within the framework of quasi-static approximation. From the potential distributions in the core, shell(s), and host medium, and using the modified Drude-Sommerfeld model, we separately obtained the expressions for LFEF of core/shell and core/spacer/shell nanocomposites. By changing the sizes of each of the components of the nanocomposites in these expressions, we found that the LFEF of CdSe@Ag increases with a decrease in the size of the core. At the same time, the resonance peaks are red shifted in the inner interface and blue shifted in the outer interface of the shell. The result also reveals that whether the shell radius is kept constant or decreased, increasing the core size produces a lower field enhancement factor showing that the core size is a crucial parameter to change the field enhancement factor of the dielectric core and metal shell nanoparticle (NP). When the spacer (ZnSe) is placed between the core (CdSe) and the shell (Ag), the resonance peaks increased with increase in the size of the core which was not observed in the case of the two layered core/shell nanocomposites having the same core and shell sizes. We also found that placing the spacer and varying the sizes of the core, the spacer, and the shell show different effects on the LFEF of the nanocomposite. The possibility of obtaining size dependent LFEF by adjusting the sizes of nanoparticles makes these nanocomposites attractive for applications in nonlinear optics, photocatalysis, and optoelectronics.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3