An experimental and theoretical study on nanomachining forces along zigzag and armchair lattice orientations of monolayer MoS2

Author:

Li MengORCID,Zhang Yu,Wang Lu,Xi Ning,Xin Xiaoning,Jin XiaoshiORCID,Wu MeileORCID

Abstract

Abstract Recent progresses in the synthesis of large-area and stable atomically thin MoS2 have evoked enormous interest toward the future applications of two-dimensional (2D) electronics. Although considerable theoretical researches have been conducted to examine the zigzag and armchair lattice orientations of MoS2, which are closely related to the physical and chemical properties of this material, experimental investigations into these two orientations are still quite rare. In this paper, we present an experimental study on nanofabrication along the zigzag and armchair orientations of monolayer MoS2 using normal- and phase-mode AFM. After identifying the zigzag and armchair orientations, distinctly different nanofabrication forces along these two orientations are obtained, which are approximately 15.9 nN and 35.8 nN, respectively. To determine the underlying mechanism of this discrepancy, molecular dynamics simulation is performed. The simulated nanofabrication forces along the zigzag and armchair orientations are 12.16 ± 0.59 nN and 21.45 ± 0.74 nN, respectively, in good agreement with the experimentally measured ones. The results provide a better understanding of the zigzag and armchair lattice orientations of monolayer MoS2 as well as a promising approach to closed-loop fabrication of 2D materials with desirable lattice orientations.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

State Key Laboratory of robotics jointly funded by Liaoning Provincial Department of science and technology

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Liaoning Provincial Department of Education

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3