Transport abnormity and its modulations via gating effect and light illumination at the SrNbO3/SrTiO3 interface

Author:

Yan XiORCID,Zhang Hui,Shen Baogen,Hu Fengxia,Sun JirongORCID

Abstract

Abstract LaAlO3/SrTiO3-based two-dimensional electron gas (2DEG) has been extensively studied because of its intriguing physical properties and potential application prospect. However, seldom researches have related their extraordinary macroscopic transport phenomena to the microscopic domain structure of SrTiO3. This requires some unique technique like scanning superconducting quantum interference device (SQUID) microscopy. In this work, we developed a different 2DEG system at the interface of SrNbO3 thin film and SrTiO3. Using only the electrical methods, we found a pronounced hysteresis behavior in the resistance versus temperature curves, marked by the appearance/disappearance of two resistance peaks in the heating/cooling process. In sharp contrast to the conventional gate effect, the resistance peak grows under positive electric biases applied to backgate with conducting interface being grounded. In addition, a weak light (0.04 mW, 405 nm) can completely eliminate the two resistance anomalies. After a systematic analysis, we attribute the resistance anomaly to the cubic-tetragonal transition of bulk SrTiO3 and surface SrTiO3. The present work presents a promising demonstration to get mesoscopic information on oxide interface via transport behaviors.

Funder

Key Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Science Challenge Project

National Basic Research of China

China Scholarship Council

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3