Microstructure transformation and twinning mechanism of 304 stainless steel tube during hydraulic bulging

Author:

Song G S,Ji K SORCID,Song H WORCID,Zhang S H

Abstract

Abstract At room temperature, the hollow shaft of AISI 304 stainless steel tubes was produced by a hydraulic bulging process. The behavior of strain-induced austenite to martensite transformation and the twin crystallographic nature of AISI 304 stainless steel tubes at different positions after hydraulic bulging were discussed. The results have demonstrated that strain-induced austenite to martensite transformation occurred in AISI 304 stainless steel tubes during hydraulic bulging, resulting in the formation of the α′-martensite phase, and the volume fraction of martensite gradually increased with an increase in strain. The austenite and α′-martensite phases maintained lattice coherency throughout and followed the Kurdjumov–Sachs (K-S) relationship in terms of lattice coherency. During the deformation process, de-twinning occurred in the austenite and the deformation twins were formed in α′-martensite. With the increase in strain, the volume fraction of the annealing twins gradually reduced until complete disappearance in the austenite. The volume fraction of the deformation twins increased in the martensite with an increase in strain, and finally reached saturation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3