Abstract
Abstract
Chemical vapor deposition is a popular technique for producing high-quality graphene sheets on a substrate. However, the cooling process causes the graphene sheet to experience a strain-induced, out-of-plane buckling. These wrinkles structures can have undesirable effects on the properties of the graphene sheet. We construct a pair of models to analyse the conformation structure of these wrinkles. An arch-shaped wrinkle is first modelled then expanded to incorporate self-adhesion between the wrinkle edges. Variational techniques are employed on both models to determine the optimal conformation for graphene supported on Cu and Ni substrates. We find these models predict a similar structure to experimental analysis of graphene wrinkles on these solid metal substrates.
Funder
Australian Research Council
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献