Simulation and experiments on the performance of Co and Mo doped AgNi contact materials

Author:

Wang Jingqin,Jia JiyingORCID,Cui Defeng,Guo Peijian,Lu Ningyi

Abstract

Abstract In response to the inadequacy of experimental methods to explore the effect of doping modification on the performance of AgNi contact materials, the Ag/Ni interface simulation model was established based on the first-principles density functional theory to study the interfacial stability and electronic structure of Ag/Ni with Co-doped and Mo-doped. The stability at the interface can directly affect the anti-melt welding performance of AgNi contact materials. The doping can enhance the interfacial bonding stability of Ag/Ni, the hybridization of Ag and Ni orbitals and the bonding strength of Ag-Ni metal bonds, among which the Mo-doped Ag/Ni has the best stability. The contact materials were prepared by powder metallurgy method. Wettability test and electrical contact performance test were conducted on AgNi contacts before and after doping. It was found that Co and Mo doping improved the anti-melt welding performance and anti-arc erosion performance of the intrinsic contact materials, which verified the simulation conclusions. The doping of Mo in AgNi contacts resulted in a substantial reduction of melt welding force and a significant reduction of material loss, which had the most obvious improvement effect on the contact materials.

Funder

Local Science and Technology Project guided by the Central Government

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3