High-temperature fatigue life prediction method for rubber bushing of new-energy vehicles based on modified fatigue damage theory

Author:

Yunzhou FangORCID,Honglei Zhang

Abstract

Abstract Rubber bushing are important components in suspension of new-energy vehicles. It is of great practical engineering significance to conduct in-depth study of high temperature fatigue characteristics. On the high temperature fatigue test bench, the same batch of dumbbell rubber test pieces with the same material as rubber bushing and the same vulcanization process were subjected to fatigue test at different temperatures, then the arithmetic mean value of the fatigue life of each rubber test piece was taken as the fatigue life at given temperature. It was found that the fatigue life of the rubber test piece at each temperature can be well fitted when the peak of engineering strain is taken as the damage parameter. Moreover, on the basis of the fatigue damage theory, the Arrhenius high temperature aging factor was introduced to correct the fatigue damage formula considering the influence of temperature on fatigue life. The finite element analysis was used to determine the peak of engineering strain of the dangerous point of the rubber bushing at 70 °C, and the modified fatigue damage formula was employed. The prediction value of the rubber bushing fatigue life was calculated and compared with the bench test result. It is shown that the predicted fatigue life dispersion coefficient is less than 2, indicating the effectiveness of the proposed high temperature fatigue life prediction method. The research in this paper can provide reference for the durability design and fatigue life prediction of rubber parts in new-energy vehicles.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference20 articles.

1. A literature survey on fatigue analysis approaches for rubber;Mars;Int. J. Fatigue,2002

2. Fatigue life prediction for vibration isolation rubber based on parameter-optimized support vector machine model;Liu;Fatigue Fract. Eng. Mater. Struct.,2019

3. Lifetime prediction of filled elastomers based on particle distribution and the J-integral evaluation;El Yaagoubi;Int. J. Fatigue,2018

4. Influence of experimental parameters on fatigue crack growth and heat build-up in rubber;Stadlbauer,2013

5. Rubber fatigue life under multiaxial loading: numerical and experimental investigations;Zine;Int. J. Fatigue,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3