Enhancing wear resistance of AZ61 alloy through friction stir processing: experimental study and prediction model

Author:

Anne GajananORCID,S RameshORCID,Sharma Priyaranjan,B H Maruthi PrashanthORCID,S Aditya Kudva,Kumar Prakash,Sahu SandeepORCID,Bhat NagarajORCID

Abstract

Abstract In this study, friction stir processing (FSP) is proposed for the treatment of AZ61 alloy, and an artificial neural network is built to predict and compare the experimental wear results. The effects of different processing parameters, including spindle speed (800–1200 rpm), traveling speed (5–15 mm min−1), and depth of press (0.8–1.2 mm) on the microstructural evolution, mechanical properties, and wear behavior are investigated. Microstructural analysis reveals a grain size of 14 ± 2 μm for the FSP1 sample, with observed shifting of x-ray diffraction (XRD) peaks, indicative of texture development. Increasing spindle and traveling speeds increase the surface roughness, as observed by average roughness (Ra) values of 68.4 nm for a rotational speed of 800 rpm, traveling speed of 5 mm min−1, and shoulder depth of 0.8 mm (FSP1) and 116.3 nm for rotational speed of 1200 rpm, traveling speed of 15 mm min−1, and shoulder depth of 1 mm (FSP9). Microhardness values increase to 113.36 Hv for FSP1 and 79. 51 Hv for FSP9 compared to 65.92 Hv for the base material (BM) sample. The decrement in hardness from FSP1 to FSP9 can be attributed to increased heat input, resulting in coarse microstructure. Wear results show that FSP1 exhibits the lowest weight loss (0.003 g) and coefficient of friction (COF) (0.28) compared to other FSP conditions and BM samples (weight loss of 0.022 g and COF of 0.68). This work demonstrates the efficacy of friction stir processing in enhancing the wear resistance of magnesium alloys.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3