Co-doping strategies for advanced solid state electrolytes with lithium salt: a study on the structural and electrochemical properties of LATP

Author:

Shahid Hassaan Bin,Nasir Khadija,Ahmad Haseeb,Ali Ghulam,Bashir Shahid,Quazi M MORCID

Abstract

Abstract The commercialization of lithium-ion batteries has revolutionized the field of energy storage, yet their usage of organic electrolytes has led to significant safety concerns. Solid-state electrolytes have emerged as a promising solution to these issues, enabling the development of high-performance solid-state lithium batteries. The NASICON-type solid electrolyte Li1.3Al0.3Ti1.7P3O12 (LATP) has demonstrated excellent properties and significant potential. This study involves the solid-state synthesis of LATP electrolytes doped with Cobalt and Silicon. Furthermore, adding 8% LiBr into LATP-0.04 significantly enhanced ionic conductivity, reaching a value of 3.50 × 10−4 S cm−1. This can be linked to lithium salt filling vacant spaces between grains, resulting in a significant drop in grain boundary resistances. The electrochemical analysis through Linear Sweep Voltammetry (LSV) indicates that the investigated material demonstrates the capability to sustain stability and functionality even under the influence of elevated voltages, notably up to 5.45 V. These findings imply that optimal cobalt doping and Lithium salt contribute to superior ionic conductivity compared to pristine LATP.

Funder

NUST, Pakistan

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3