Nanofibrous membrane through multi-needle electrospinning with multi-physical field coupling

Author:

Zhu ZimingORCID,Zheng GaoFeng,Zhang RongguangORCID,Xu Guojie,Zeng Jun,Guo Rui,Wei Xue,Wang Han

Abstract

Abstract The mass electrospinning is the key way to promote the industrial application of nanofibrous membrane, in which the multi-parameter controlling is the challenge for the multi-needle electrospinning. A constant temperature and humidity environment was introduced to studied the effect of process parameters on the ejection process of multi-needle electrospinning process. This article focused on the nanofiber deposition behaviors of multi-needle electrospinning from two different polymer solution of aqueous solution of poly (ethylene oxide) and the non-aqueous solution of polyvinylidene fluoride. We found that the same humidity has opposite effects on the deposition morphology of the water-soluble material PEO and the non-water-soluble material PVDF electrospun fiber. At the same time, we explored the effects of solution conductivity, solvent volatility, temperature and viscosity on electrospinning on water-insoluble and water-soluble materials. What this paper aim is to provide a process debugging reference for the batch preparation of nanofibers of different materials by multi-needle electrospinning.

Funder

Applied Science and Technology Development Foundation of Guangdong

Guangdong High-level Personnel of Special Support Program

Key Project of Science and Technology

National Natural Science Foundation of China

Natural Science Foundation

Project of Jihua Laboratory

Project of Science and Technology of Foshan City

R&D Key Projects

Science and Technology Planning Project of Guangzhou

Science and Technology Project of Guangdong Province

University Innovation and Entrepreneurship Education Major Project of Guangzhou City

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3