Extracting mechanical and microstructural properties of Cu–Zr thin film alloys by MEMS, AFM and ellipsometer

Author:

Alarifi Nahed,Al-Gawati Mahmoud A,Alnjiman Fahad,Albrithen Hamad,Alodhayb Abdullah NORCID

Abstract

Abstract The quantification of the atomic concentration ratios of thin-film metallic alloys having low atomic ordering is challenging, particularly if they are grown on similar metals and possess different surface chemistries. Micromechanical and optical methods have been used to correlate the elemental ratios with the mechanical and optical properties of the films. The room-temperature growth of Cu–Zn thin-film alloys with varying elemental ratios on cosputtered Si substrates was performed to obtain an amorphous film structure. X-ray diffraction patterns confirmed that the grown films exhibited a very short range ordering, suggesting an amorphous structure. The mechanical properties of the films evaluated using microelectromechanical system (MEMS) indicated that the alloy films with moderate Zr concentrations had lower surface stress compared to those with low and high Zr concentrations. Furthermore, spectroscopic ellipsometry was employed to qualitatively assess the relaxation times of free carriers. The results demonstrated a strong correlation between the relaxation times and surface roughness measurements, showing that the microstructure and resistivity characteristics of the alloys align with the Nordheim semiempirical model. The extinction coefficient of the binary alloy film linearly depends on the metallic bulk concentration ratio in a specific metallic ratio range, paving the way for realizing qualitative elemental percentage assessment in the field of metrology.

Funder

King Saud University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3