Effect of hydrogen embrittlement and non-metallic inclusions on tensile fracture properties of 55CrSi spring steel

Author:

Li Na,Wang Wei,Liang Qimin

Abstract

Abstract The tensile fracture behavior of 55CrSi spring steels were investigated. The results demonstrate that interior inclusion and hydrogen level has a significant effect on ductility and a minimal effect on tensile strength of the spring steel. It was due to the effect of cracking from MgO-Al2O3 spinel inclusion or the inclusions with a mixture of CaO, SiO2 and part of Al2O3 due to hydrogen. The results of SEM showed that the ductility reduction is connected with the formation of ‘fisheye’ which formed under the influence of mobile hydrogen. For the specimen containing MgO-Al2O3 spinel inclusion, the fracture surface in the ‘fisheye’ area is mainly composed of three regions including typical quasi-cleavage mixed intergranular fracture, dimple mixed transgranular fractures and ductile fracture from the interior to the edge, whereas there is no obvious transition zone from brittle fracture to dimple fracture in the ‘fisheye’ area of the specimen containing inclusions with a mixture of CaO, SiO2 and part of Al2O3.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3