Structural stabilities, electronic structures, photocatalysis and optical properties of γ-GeN and α-SnP monolayers: a first-principles study

Author:

Liu Liming,Yan CuixiaORCID,Gao Lei,Shangguan Wei,Dai JianqingORCID,Cai JinmingORCID

Abstract

Abstract Exploring two-dimensional materials with excellent photoelectricity properties is of great theoretical significance and practical value for developing new photocatalysts, electronics and photonic devices. Here, using first-principle calculations, we designed and analyzed systematically a series of α, β and γ phase structures of two-dimensional group IV-V monolayers (IV-V, IV = C, Si, Ge, Sn, Pb; V = N, P, As, Sb, Bi), most of them are semiconductors. Among them, γ-GeN and α-SnP monolayers with thermodynamic and kinetic stability (at 300 K) have been further studied due to their wide range of energy band gaps (γ-GeN: 2.54 eV, α-SnP:1.34 eV). The two band gaps are greater than the free energy for water splitting (1.23 eV), which are crucial for photocatalytic decomposition of water. The γ-GeN and α-SnP monolayers present excellent photocatalystics properties in pH = 0/7 and pH = 10 environments, respectively. Moreover, both of the monolayers show strong light absorption coefficients greater than 105 cm−1 in the visible and ultraviolet regions. In addition, it is found that the band edge positions and band gap sizes of γ-GeN and α-SnP monolayers can be regulated by biaxial strain. Benefitting from the wide selection of energy band gaps and high absorption coefficients, the γ-GeN and α-SnP monolayers are the next generation of promising candidate materials for photocatalysts, nanoelectronics and optoelectronics.

Funder

National Natural Science Foundation of China

Thousand Talents Plan-The Recruitment Program for Young Professionals

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3