Experimental investigation of spin coating acceleration effect on the DSSC performance

Author:

Yıldız YusufORCID,Bilen KemalORCID,Atılgan AbdullahORCID

Abstract

Abstract The optimization of the TiO2 mesoporous structure plays significant role in dye-sensitized solar cell (DSSC) to produce efficient devices. In this study, the TiO2 mesoporous layer was coated by using a spin coating equipment with different spin accelerations. As a consequence of this investigation, the impacts of the spin coating acceleration on the optoelectronic and electrical performance characteristics of the DSSC were investigated. It has been shown that altering the spin coating acceleration has a direct impact on the mesoporous layer, which in turn influences the absorption ability of dye. The light absorbance of the sample A5 (coated at 2000 rpm s−1) ascended drastically in accordance to other samples. Thanks to this augmentation in absorbance, the current density (J SC ) and power conversion efficiency (PCE) values also improved. According to electrochemical impedance spectroscopy analysis, it was attained that recombination resistance values increases with the rising spin coating acceleration rates after 500 rpm s−1 and reaches up to highest value at 2000 rpm s−1. A relatively longer electron lifetime of 40.36 ms and recombination resistance of 12.22 Ω were obtained for the device coated at the rate of 2000 rpm s−1. The device coated at a rate of 2000 rpm s−1 had a PCE (5.51%) that was superior than other devices because of its improved light collecting ability, quick electron transport, suppressed electron recombination, and having longer electron life time. As a starting point for future investigations and applications, results of present study provide an insight into the optimal spin coating parameters for DSSC applications.

Funder

Ankara Yıldırım Beyazıt University BAP Unit

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3