Microstructure changes responsible for the degradation of the 10CrMo9-10 and 13CrMo4-5 steels during long-term operation

Author:

Gwoździk MonikaORCID,Motylenko Mykhaylo,Rafaja David

Abstract

Abstract The paper presents results of microstructure and mechanical testing examinations performed using optical and transmission electron microscopy, tensile tests and Charpy tests on 10CrMo9-10 and 13CrMo4-5 steels, before and after they were long-term operated at elevated temperatures in a steam heater. In the 10CrMo9-10 steel, the optical microscopy detected a degradation of original bainite that was accompanied by the formation of ferrite, precipitates and micropores. The transmission electron microscopy revealed that the precipitates are M23C6 and M7C3 type carbides, which are located mainly at the boundaries of former austenite grains, and M3C type carbides, which appear inside the grains. The 13CrMo4-5 steel contained a relatively high amount of ferrite in the ferritic-bainitic/perlitic microstructure already in the originally state. The degradation of the microstructure was less serious than for the 10CrMo9-10 steel. The thermal treatment of the 13CrMo4-5 steel led mainly to the precipitation of carbides. The M23C6 and M7C3 type carbides form in perlitic-bainitic areas, while M3C and M6C type carbides precipitate in ferrite. The higher density of the grain boundary precipitates in the long-term operated 10CrMo9-10 steel facilitated the formation of creep-induced micropores and contributed to the hardness reduction.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3