The effect of impingement angle on erosion wear characteristics of HVOF sprayed WC-Ni and WC-Cr3C2-Ni cermet composite coatings

Author:

Chen YiruiORCID,Wu Yuping,Hong Sheng,Long Weiyang,Ji Xiulin

Abstract

Abstract The present study investigated the erosion wear behavior of WC-Ni and WC-Cr3C2-Ni cermet coatings deposited by high velocity oxy-fuel (HVOF) spray process on the substrate of 1Cr18Ni9Ti stainless steel. Microstructures and morphologies of the coatings were examined using SEM images, and x-ray diffractometer was used to analyze the phase composition of the powder and the coatings. The erosion test was carried out using home-made jet rig. In order to better fit the research background of this study, the erodent used for erosion was taken from the Yellow River, China. The coating is well combined with the substrate; and WC-Cr3C2-Ni coating consists of WC, Cr3C2 and Ni phases, WC-Ni coating consists of WC, W2C and Ni phases. Some mechanical properties of the two coatings were compared, WC-Cr3C2-Ni coatings have higher hardness to be compared with WC-Ni ones due to a lower binder content; and the elasticity modulus and nano-hardness values of the WC-Cr3C2-Ni coating are higher than that of the WC-Ni coating. The relationship between the wear performance of the coatings and impingement angle was obtained; and the erosion resistance of the coatings was analyzed. It was observed that WC-Cr3C2-Ni cermet coating exhibits higher erosion resistance under all testing conditions as compared with the WC-Ni cermet coating and 1Cr18Ni9Ti stainless steel. The results show that the erosion mechanism at low angle is mainly cutting, while erosion pits dominate at high angle for the coatings, moreover, plastic deformation could be observed in the case of the binder depletion and cracking found place. and the erosion mechanisms of the 1Cr18Ni9Ti stainless steel are mainly cutting and plastic deformation at low angle and high angle, respectively.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3